Methyl deficiency, alterations in global histone modifications, and carcinogenesis.

نویسندگان

  • Igor P Pogribny
  • Volodymyr P Tryndyak
  • Levan Muskhelishvili
  • Ivan Rusyn
  • Sharon A Ross
چکیده

The methyl-deficient model of endogenous hepatocarcinogenesis in rodents is unique in that dietary omission rather than the addition of chemical carcinogens leads to tumor formation. Thus, the biochemical and molecular events predisposing to cancer in this model result from chronic metabolic stress and provide an ideal model system to study progressive alterations that occur during carcinogenesis. Moreover, epigenetic alterations imposed by this diet are believed to be 1 of the main mechanisms responsible for malignant transformation of rat liver cells. In this study we examined the changes in global histone modification patterns in liver during hepatocarcinogenesis induced by methyl deficiency. Feeding animals the methyl-deficient diet (MDD) led to progressive loss of histone H4 lysine 20 trimethylation (H4K20me3), H3 lysine 9 trimethylation (H3K9me3), and histone H3 lysine 9 (H3K9ac) and histone H4 lysine 16 (H4K16ac) acetylation. A considerable decrease of H4K20me3 and H3K9ac was also detected in liver tumors induced by MDD. In contrast, liver tumors displayed an increase in H3K9me3 and H4K16ac. To determine the possible mechanism of alterations of histone modifications, we analyzed the expression of histone-modifying enzymes in liver during hepatocarcinogenesis. The expression of Suv4-20h2 and RIZ1 histone methyltransferases (HMTs) steadily decreased along with the development of liver tumors and reached its lowest level in tumor tissue, whereas the expression of Suv39-h1 HMT and histone acetyltransferase 1 (HAT1) substantially increased in tumors. These results illustrate the complexity and importance of histone modification changes in the etiology of hepatocarcinogenesis induced by MDD.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The Impression of Histone Modification and DNA Methylation in Gastric Cancer Development: Molecular Mechanism Approach

The epigenetic alterations like histone modifications , DNA methylation and others remarkable categories  including nucleosome remodeling and RNA mediated targeting have been strongly investigated  recently .In this way , beside the notable importance of DNA methylation ,the histone modifications are the most important issues in the  tumorogenesis and cancer progression. Moreover...

متن کامل

Epigenetic changes in colorectal cancer

Epigenetic changes frequently occur in human colorectal cancer. Genomic global hypomethylation, gene promoter region hypermethylation, histone modifications, and alteration of miRNA patterns are major epigenetic changes in colorectal cancer. Loss of imprinting(LOI) is associated with colorectal neoplasia. Folate deficiency may cause colorectal carcinogenesis by inducing gene-specific hypermethy...

متن کامل

Histone modifications and cancer: biomarkers of prognosis?

Epigenetic dysregulation is being increasingly recognized as a hallmark of cancer. Post-translational modifications of histones, in particular, are known to play important roles gene expression alterations in cancer development and progression. Given their key involvement in the various stages of carcinogenesis, histone modifications are also being explored as potential biomarkers of disease pr...

متن کامل

Dynamic alterations of specific histone modifications during early murine development.

In order to investigate whether covalent histone modifications may be involved in early embryonic reprogramming events, changes in global levels of a series of histone tail modifications were studied during oocyte maturation and pre-implantation mouse development using indirect immunofluorescence and scanning confocal microscopy. Results showed that histone modifications could be classified int...

متن کامل

Dynamic changes in Histone H3 lysine 9 acetylation localization patterns during neuronal maturation require MeCP2.

Mutations within the gene encoding methyl CpG binding protein 2 (MECP2) cause the autism-spectrum neurodevelopmental disorder Rett Syndrome (RTT). MECP2 recruits histone deacetylase to methylated DNA and acts as a long-range regulator of methylated genes. Despite ubiquitous MECP2 expression, the phenotype of RTT and the Mecp2-deficient mouse is largely restricted to the postnatal brain. Since M...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of nutrition

دوره 137 1 Suppl  شماره 

صفحات  -

تاریخ انتشار 2007